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Violation of stability conditions of existence of multidimensional system 

periodic motions induced by transition through the discontinuity point of 
the characteristic of one of the system nonlinear elements is considered. 

It is shown that at stronger discontinuity a motion close to the disturbed 
one generally loses its stability, and that the related existence boundary 
of the stability region becomes dangerous, if no section of a sliding mode 
makes it appearance. A dangerous boundary always corresponds to a bi - 

furcation associated with the occurence of incompletely elastic collisions. 
The possibility of unlimited complication of the parameter space structure 
due to the effect of boundary “blurring” is established. An example of the 
analysis of that structure is presented, and an estimate is made of the 
width of the band of boundary blurring. 

1. Trrnrition through the dfrcontinutty of a chrrrcterirtic. 
Let us consider a piece - wise continuous dynamic system in which the characteristic of 
one of its nonlinear elements, say cp (a+); has a discontinuity defined as 

when the phase trajectory passes through some surface 

D (Xl, 52, * . 0, x,, t, p) = 0 (1.2) 

where zl, zs, . . ., t are phase coordinates of the system, zlo is the coordinate of 
the discontinuity point, and q and p are independent parameters (Fig. 1) . 

We assume that the considered system has a stable periodic solution when p < 0, 
and that a violation of conditions of its existence ( C- bifurcation) is defined by the 
tangency of some section of a phase trajectory lying in the subspace D < 0 to surface 

(1.2) wIrenIL. = 0. 
We shall investigate the effect of the quantitative index of characteristic q on the 

system behavior when parameter p is varied. Thus formulated the problem is that of 
the system coarseness relative to the nonlinear characteristics of the considered class 
[ 11. The most important aspect of this is the establishment of dangerous boundaries of 
the region of periodic solution existence whose slightest infraction (by suitable selec - 
tion of a reasonably small disturbance) results in an uncontrollable increase of deviation 
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of the motion mode from the considered in [ 2 1. 

We introduce in the analysis the I’I point transformation of some fairly smooth sur - 
face F with the transformation generated by phase trajectories of the system in the 
neighborhood of the stable periodic solution trajectory. It is possible to draw through the 
stationary point M* which on surface F corresponds to p = 0, some curve s defined 
by that the phase trajectories that pass through it are tangent to surface D = 0. Such 

curves divide F into two half - neighborhoods F+ and F- which correspond to different 

equations of the n+ and n - transformations. We assume that in the M* neighborhood 
the transformation is continuous, and that its dependence on phase coordinates and para- 

meters in each of the half - neighborhoods is fairly smooth. 

We select the coordinate system on F so that ur = us = . . . = u, -= 0 car - 
respond to p =0 and the axis u, normal to boundary s ; regions F+ and F- then 

correspond to u, of different signs. In these coordinates, linearized with respect to 
Ul, * * -, U, and IL, the equations of point transformations are of the following form 

[31: 
the lT+ transformation 

(1.3) 

and the fl- transformation 

uk’ = i; ukiui + qak (q) u, + bkp + . . . (r&&O) k=l, 2 ,...( ?I (1.4) 
i=l 

The form of these equations implies that system (1.3) can be formally obtained 

from Eqs. (1.4) by setting in these q = 0. Hence the characteristic polynomial of 
transformation (1.4) is of the form 

x (h, q) = h” + y1 (4) An-l + * * - + Yw-1(q) h + Yn (4) (1.5) 

yi =q +qpi(q), i=l,2 (..., n 

where 01~ are coefficients of the characteristic polynomial of transformation (1.3). 
On the basis of above assumptions there must exist for p < 0 the stable statio - 

nary point of transformation (1.3) 

uk* =&,+ . ..( u,*=y&p+...>o (1.6) 

where Bk+ and B, denote related determinants. 
The simple periodic solution close to the disturbed one is determined by the statio- 

nary point of transformation (1.4) 

uk 
** - -&p-t . . . . u,**=&L+...<o (1.7) 

Solution (1.7) exists, when the eigenvalues of the matrix of transformation (1.4) 

are not equal unity, and it is stable when all roots of x (a, q) = 0 lie within the unit 
circle. 
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It follows from initial assumptions about stability when Q = 0 and from the continuous 
dependence X (1, q) on the parameter that there exists a fairly small q* > 0 for which 
all roots lie in the unit circle, and that the condition 

is satisfied. 
From formulas (1.6), (1. ‘I), and condition (1.8) we obtain that when parameter 

p changes its sign, the coordinate U, of the stationary point also changes its sign and, 
consequently, the stable periodic mode (1.6) is transformed into the stable mode( 1.7). 
Thus the c - bifurcation generated by a fairly small discontinuity of the characteristic 
does not lead to qualitative changes of the system behavior, and is safe. 

We shall show that with increasing 1 q 1 the periodic solution (1.7) becomes un - 

stable, if, at least one of the ei = ,$Y~ $i (q) + 0 and a so - called sliding mode 

for which the transformation equations differ from (1.4) does not occur on surface 

D =o. 
We use the Schur stability condition and set E, # 0. Then for 1 q I + 00 the 

first Schur inequality 

I Yn I = I an + c&L @I) I < 1 (I.91 
is violated. 

Let us now assume that e, = 0 and that condition (1.9) holds. In conformity 
with the procedure for the derivation of Schur inequalities we introduce the polynomial 

x* 0% q) a and form a polynomial of n - 1 power by the rule 

Xl (A, q> = A-i (X - YnX*) = (1 - rn2) an-l + * * . -I h-l - wn) (1.10) 
x* (A, q) = YlP + Yn-#-l + - * - + YJ + 1 

The next Schur polynomial is of the form 

I%-1 - %Yn + Q o%l-1 - f&J I< 1 - Yn2 (1. 11) 

If (1.9) is satisfied and I q / + 00 the necessary conditions for inequality (1.11) to be 

satisfied are: /3n_1 (q) -j. 0 and PI (q) + 0 , or 

IL-1 - B1Yn 5% 0 (1.12) 

Dealing with subsequent Schur inequalities in the same manner, we conclude that 

on above assumptions they can only be satisfied in the degenerate case of brr (q) + 0, 
and that the remaining coefficients pi (q) (i = 1, 2, . . ., n - 1) satisfy n - 1 
equations of the kind (1.12). Hence an increase of the discontinuity of the nonlinear 
characteristic generally results in the loss of stability of the periodic motion that takes 
place in the presence of the C - bifurcation generated by that discontinuity and is close 
to disturbed motion. The related boundary of the region of periodic motion existence 

becomes dangerous. 

2. Occutrencs of oolll,ionr, A particular case of the considered problem, 
in which q + oo and cp (51) is the elastic characteristic of some joint, corresponds to 
an absolutely elastic collision at a+ = a+ It is therefore, to be expected that the 
boundary of periodic motion existence associated with the onset of not completely ela- 
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stic impacts in any elements of an oscillating structure may prove to be dangerous. This 
conclusion does not, however, follow directly from Sect. 1, and requires separate in - 

vestigation . 

Let the system phase coordinates be such that 51 defines the relative displacement 
of two colliding masses, z, = z ’ 1 , Z3 defines the displacement of one of these masses, 
and x4 = x3’. The reference point is selected so that the impact takes place at s,=O 
and impact-free motion corresponds to x1 ( 0. 

We introduce in the analysis the point transformation MI= II (M,) of the half - 
plane xi = 0, x, > 0 generated by the equations of impact-free motion in the 
neighborhood of the trajectory of the stable initial periodic solution. With this trans - 
formation the stationary point M * = II (M*) becomes in the case of C - bifurca- 
tion p = 0 the point of contact of that half-plane) while for p > 0 it corresponds 

to a motion which, although stable, is unobtainable in a real system, owing to the 
neglect of the impact interaction at x1 = 0 (Fig. 2, a). 

We assume the transformation equations to be of the form 

x11 = 0 = fl (0, x.20, 230, * * -7 Go, to, t1) (2.1) 

Xi1 = fi (0, 220, x30, - . ., Go, to, h> (i =2,3,..., n) 

The characteristic equation obtained in the usual manner from (2.1) is of the form 

I..................\ 

(i, k = 2, 3,. . ., n) 

where 6ik is the Kronecker delta and partial derivatives are determined by coordinates 
xi1 = xi0 =x1*, ta = t”, and t, = t* + T of the stationary point, and T is 
the period of motion. 

Note the singularity of this polynomial, which is related to the selection of the 

point transformation. When lo + 0 the hyperplane xi = 0 becomes a surface with 
contact, and the relative velocity xa* = df, / at, -j. 0. This implies that the coeffi- 
cient 

co = (- lynx,* +o (2.3) 

In the case of a definitely stable periodic motion, condition (2.3) implies that all 
other coefficients c, in Eq . (2.2) also vanish in the presence of a C - bifurcation, 
which indicates the appearance in the equation of a common factor which also vanishes 
when p + 0. 

Let us now consider the near - periodic motion which includes collisions of masses 
at xi = 0 (Fig. 2, b). (When a C -bifurcation of periodic motion is induced by the 
appearance of additional collisions, the occurence of a particular sliding mode is 

possible in certain cases [4]). If the impact is considered to be instantaneous with the 
velocity recovery coefficient R, we have the known relationship between the post - 
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and pre - collision velocities, respectively zs,,+ and zqO+, and x20 and 5qo , of the 

form 

x20+ = - &o, 24o+ = z4o -5 px2o, p = +g (2.4) 

where x denotes the ratio of colliding masses. The stationary transformation point 

0 = fi @-- %rJ, x30, 540 + Pzo: * . ‘7 %o, to, b> (2.5) 
xi1 = fi (0, -%,,, 530, 540 + ~520..., xno, to, tA 

(i = 2, 3, . ..) n) 

corresponds to a periodic solution. The characteristic matrix of Eqs. (2.5) %rmally dif- 

fers from (2.2) only by the elements of the first column 

- R f$ - 6i2h + p$ (i = I, 2,. . ., n) 
2i! 

(2. ‘3) 

Since at the c - bifurcation the considered periodic motions merge, the partial 

derivatives in both characteristic equations are the same. From this and directly from 

(2.2) and (2.6) we obtain that for the characteristic polynomial 

of transformation (2.5) Co (R) - co -+ 0 and C, (R) = - Rc, -+ 0 when p-+0. 
However, if not all afi / &rZo -+ 0 , at least one of the remaining coefficients C,(R) 
(m = I?. . ., n - 1) does not vanish for any R E (0,l). But then at least one of 
the stability conditions for motions generated at the c - bifurcation with additional col- 

lisions is violated. 
Note that this implies the instability of periodic motions with collisions which are 

close to harmonic (i. e. collision-free motions). This indicates the necessity of a stric- 
ter proof of the validity of the method of harmonic linearization for analyzing periodic 

oscillations of systems with collisions. 

3, Structure of tho neighborhood and the effect of rxirtence 
boundary blurring, The detection in the existence boundary of sections with loss 
of stability poses the problem of determination of the kind of motion which is establi - 
shed at transition through such sections and of the properties of such motions. For de - 
fining the C - bifurcation we shall use thecriteria derived in [S]. If the characteristic 

polynomial X (A, 9, CL) of the considered transformation is known, the condition ofsafe 
transition involving the change of sign of parameter p is of the form 

x(1,0,0)x(1,~70)>07 lQICQ+, x(1,C7+70) =o (3. I) 

The unsafe transition in which the initially stable motion (cl = 0) merges with 
the unstable motion (q # 0) and then vanishes is defined by 

(3.2) 

The condition of generation of a motion of doubled period whose phase trajectory 
does not reach the discontinuity surface D = 0 (1.2) in a single revolution and in two 
revolutions penetrates the subspace D > 0 is 
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x (- 17% 0) x (- 1, q, 0) < 0, I q I > !?A x (--- 1, Q-9 0) = 0 (3.3) 

Note that condition (3.3) defines two alternatives: a safe one when 1 q 1 < q++ 
and an unsafe one when 1 q 1 > q++, which are similar to cases (3.1) and (3.2). The 
parameter q++ corresponds here to the loss of stability of a two-revolution motion. 

By supplementing the above conditions with the known properties of the systemnear 
the stability region boundary, namely, that vanishing of the boundary x (1, q, p) = 0 
of the Jacobian of transformation corresponds to the merging of stable and unstable mo- 

tions of the same kind and that the boundary x (- 1, q, JI.) = 0 corresponds to the 
generation of two-revolution motion , we obtain the following simplest qualitative pat- 
terns of the structure of the neighborhood of the considered C -boundary l.r = 0 in 
the plane of the two parameters /.L and q (Fig. 3). This kind of motion is conventio - 
nally represented there by a section of the phase trajectory, the shaded area corresponds 
to unstable motions, the presence of discontinuities relates to the penetration of the 
motion phase trajectory into region D > 0, and the two adjacent sections correspond 

to a two-revolution periodic motion. 
The shaded area in Fig. 3bcorresponds to a C -bifurcation transition between two 

two-revolution modes with one and two-phase trajectory penetrations into the subspace 

D > 0. The above analysis is fully applicable to the structure of the indicated area 
which with increasing 1 q 1 may not only become complex in itself but, also, generate 
new bifurcation nodes which become origins of new C- and motion stability boundaries 
that are even more complex than the initial ones (see (1.6) and (1.7) ). 

If simultaneously the whole region of solution ambiguity in the neighborhood of the 

c - boundary p = 0 remains fairly narrow, it is that region as a whole, not the nume- 

rous individual boundaries of transition and stability contained in it, that is of practical 
interest. It is then correct to speak of blurring of the existence boundary of periodic mo- 

tion (1.6). 
With increasing structure complexity an exact analysis of properties of particular 

kinds of motions in the boundary blurring area loses practical meaning. Depending on 
the object of investigation, it may prove to be advantageous either to use the statistical 
approach to the study of such motions or to modify the considered model so as to elimi- 

nate the generation of stochastic processes. 
Width of the band of blurring of the existence boundary can be estimated by inves- 

tigating the behavior of some of the stability boundaries. For the parameter space region 

/.r < 0 it is the stability boundary of a generally manifold mode that corresponds to one 

of the roots of the characteristic equation being equalfl. For region p > 0 it is the 
stability boundary of periodic motion (1.7) that corresponds to the conversion of one of 

the roots to-1 (Fig.3). 

4, Example. Let us investigate the width and the structure of the blurring band 
at one of the sections where there exists a linear system of forced oscillation mode dis - 
turbed by a fixed motion limiter. The dimensionless equations of motion of such system 

are of the form 

5” + 2cx’ +s = cos 0% (5 < a) (4.1) 
x+* = - Rx_’ (x = d) 
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where c is the coefficient of linear friction and R is the coefficient of velocity reco- 
very at impact. 

We denote by I’ (n, kf the stable motion with k impacts in the course of one period 

equal 2nn / o. Stable forced linear oscillations T (1, 0) obviously exist in system (4.1) 

when P = d/d,-l>O, where d, is the amplitude of such oscillations. Analysis shows 
that at the boundary of p = 0 a simple safe transition to any stable motion mode of 

the kind I’ (n, l)‘is impossible. Note that on the indicated boundary not only indivi - 
dual !J (n, k) but complete sets of such motions may be generated [S]. However, the 
stated problem can be solved by restricting the analysis to a set of motions of the kind 

I‘ (n, 1). 
When c 4 1 the equation for the stability boundary I’ (n, 1) lying in region p > 0 

and corresponding to one of the roots equal +i may be written as [S] 

u((z+pj -O~(~tg $-c (i- &))“=o, 0 =$, sine<0 (4.2) 

Within the existence region of any of the periodic solution (4.1) the dependence of 

this solution on parameters is continuous. Hence, the wider the region of ambi~ity of 

solutions comprised between curve (4.2) and the C -boundary of I* = 0, the more 
“dangerous” the collapse of forced linear oscillations at that boundary may prove to be. 
It is known that similar collapses of systems whose elastic properties are somewhat stiff 

occur in the region of frequencies higher than resonance. 
Let us now consider region of frequencies o < 1 lower than resonance. Stable mo- 

des T (n, 1) for p > 0 occur in conformity with (4.2) in the frequency intervals 

(4.3) 

The width of each of these regions estimated over mean values of w in intervals(4.3) 
tends to zero with increasing n when o --+ 1 in accordance with the approximate for- 
mula 

(4.4) 

From the side of p > 0 region S , whose structure becomes more complex in the 

interval “ia < o < 1 t extends to the stability boundary of the single impact mode 

I’ (I, 1). which corresponds to the equality h = - 1 for one of the roots of the charac- 

teristic polynomial. 
In the case of 1 - 01 < 1 and energy dissipation produced only by not entirely ela- 

stic collisions the equation of that boundary may be presented as 

(4.5) 

Thus in the neighborhood of w = 1 region S lies between the boundaries (4.4) 
and (4.5) which originate at point o = 1, p = 0. The size of S increases somewhat 
with increasing R . For R = 0.6 that region is shown in Fig.4. The number m of 

various modes of the kind r (n, i>, that may occur at one and the same frequency is 

determined in conformity with (4.3) by the inequality 
1/(2n) < 1 IO -1<1 /(n+m) 
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and increases indefinitely with the approach to resonance frequency. The variation 

range of parameter p within S then tends to zero. The increasing complexity of that 
structure makes unattractive the investigation of individual motions in S . This does 

not, however, imply the unavoidability of statistical analysis. If maximum deflections 

of an oscillating system and not the phases of separate collisions are of interest , it is 
advisable to use a different mathematical model for that part of the S region where 

the effect of blurring of the existence boundary of I? (I, 0) is strongest. The simplest 
variant of this can be a linear model in which energy dissipation owing to not entirely 
elastic collisions is taken into account, The related input to the “equivalent” linear 

friction coefficient co can be estimated by formula 

c”=c+ (1--)(1--R) 
*/2n (1 + w 

(4.6) 

which was readily obtained in formula (4.4) as a supplement to coefficient c . 
This makes it possible to investigate individual motions for fairly large n, since it 

is possible to avoid stochasticity by substituting a linear model with the friction coef - 

ficient (4.6) and w > 2n / (1 + 2n) for the original model (4.1). 

We note in conclusion that the results of the present investigation are in good agre- 
ement with those carried out on an analog computer for the fine structure of motions in 

system (4.1) [S]. In fact, in the subresonance region the kinds of motions were beco- 

ming more complex the closer the parameters were selected to the boundary p=o 

and frequency o = 1 . Appearance of stochasticity is to be expected in cases when exis- 

tence regions of individual parameter become so narrow that they are spanned over by 
fluctuations of the analog computer elements. The motions called in [6] quasi-periodic 

apparently correspond to such cases. 
The obtained theoretical results make it possible to better define the disposition of 

existence boundaries denoted in [6] by pi. Since they are unsafe, they must shift into 

the region of solution ambiguity. 
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